pyvista-xarray 0.1.2


pip install pyvista-xarray==0.1.2

Project Links

Meta
Author: Kitware, Inc.
Requires Python: >=3.8

Classifiers

Development Status
  • 3 - Alpha

License
  • OSI Approved :: Apache Software License

Operating System
  • OS Independent

Programming Language
  • Python :: 3
  • Python :: 3.8
  • Python

PyVista xarray

PyPI codecov MyBinder

xarray DataArray accessors for PyVista to visualize datasets in 3D

๐Ÿš€ Usage

You must import pvxarray in order to register the DataArray accessor with xarray. After which, a pyvista namespace of accessors will be available.

Try on MyBinder: https://mybinder.org/v2/gh/pyvista/pyvista-xarray/HEAD

The following is an example to visualize a RectilinearGrid with PyVista:

import pvxarray
import xarray as xr

ds = xr.tutorial.load_dataset("air_temperature")
da = ds.air[dict(time=0)]  # Select DataArray for a timestep

# Plot in 3D
da.pyvista.plot(x="lon", y="lat", show_edges=True, cpos='xy')

# Or grab the mesh object for use with PyVista
mesh = da.pyvista.mesh(x="lon", y="lat")

air_temperature

Or you can read VTK meshes directly to xarray:

import xarray as xr

ds = xr.open_dataset("data.vtk", engine="pyvista")
ds["data array"].pyvista.plot(x="x", y="y", z="z")

โฌ‡๏ธ Installation

๐Ÿ Installing with conda

Conda makes managing pyvista-xarray's dependencies across platforms quite easy and this is the recommended method to install:

conda install -c conda-forge pyvista-xarray

๐ŸŽก Installing with pip

If you prefer pip, then you can install from PyPI: https://pypi.org/project/pyvista-xarray/

pip install pyvista-xarray

๐Ÿ’ญ Feedback

Please share your thoughts and questions on the Discussions board. If you would like to report any bugs or make feature requests, please open an issue.

If filing a bug report, please share a scooby Report:

import pvxarray
print(pvxarray.Report())

๐Ÿ Further Examples

Simple RectilinearGrid

import numpy as np
import pvxarray
import xarray as xr

lon = np.array([-99.83, -99.32])
lat = np.array([42.25, 42.21])
z = np.array([0, 10])
temp = 15 + 8 * np.random.randn(2, 2, 2)

ds = xr.Dataset(
    {
        "temperature": (["z", "x", "y"], temp),
    },
    coords={
        "lon": (["x"], lon),
        "lat": (["y"], lat),
        "z": (["z"], z),
    },
)

mesh = ds.temperature.pyvista.mesh(x="lon", y="lat", z="z")
mesh.plot()

Raster with rioxarray

import pvxarray
import rioxarray
import xarray as xr

da = rioxarray.open_rasterio("TC_NG_SFBay_US_Geo_COG.tif")
da = da.rio.reproject("EPSG:3857")

# Grab the mesh object for use with PyVista
mesh = da.pyvista.mesh(x="x", y="y", component="band")

mesh.plot(scalars="data", cpos='xy', rgb=True)

raster

import pvxarray
import rioxarray

da = rioxarray.open_rasterio("Elevation.tif")
da = da.rio.reproject("EPSG:3857")

# Grab the mesh object for use with PyVista
mesh = da.pyvista.mesh(x="x", y="y")

# Warp top and plot in 3D
mesh.warp_by_scalar().plot()

topo

StructuredGrid

import pvxarray
import pyvista as pv
import xarray as xr

ds = xr.tutorial.open_dataset("ROMS_example.nc", chunks={"ocean_time": 1})

if ds.Vtransform == 1:
    Zo_rho = ds.hc * (ds.s_rho - ds.Cs_r) + ds.Cs_r * ds.h
    z_rho = Zo_rho + ds.zeta * (1 + Zo_rho / ds.h)
elif ds.Vtransform == 2:
    Zo_rho = (ds.hc * ds.s_rho + ds.Cs_r * ds.h) / (ds.hc + ds.h)
    z_rho = ds.zeta + (ds.zeta + ds.h) * Zo_rho

ds.coords["z_rho"] = z_rho.transpose()  # needing transpose seems to be an xarray bug

da = ds.salt[dict(ocean_time=0)]

# Make array ordering consistent
da = da.transpose("s_rho", "xi_rho", "eta_rho", transpose_coords=False)

# Grab StructuredGrid mesh
mesh = da.pyvista.mesh(x="lon_rho", y="lat_rho", z="z_rho")

# Plot in 3D
p = pv.Plotter()
p.add_mesh(mesh, lighting=False, cmap='plasma', clim=[0, 35])
p.view_vector([1, -1, 1])
p.set_scale(zscale=0.001)
p.show()

raster

Wheel compatibility matrix

Platform Python 3
any

Files in release

Extras: None
Dependencies:
xarray (<2022.9.0,>2022.3.0)
pyvista
scooby