numba 0.33.0


pip install numba==0.33.0

Project Links

Meta
Author: Continuum Analytics, Inc.

Classifiers

Development Status
  • 4 - Beta

Intended Audience
  • Developers

License
  • OSI Approved :: BSD License

Operating System
  • OS Independent

Programming Language
  • Python
  • Python :: 2.7
  • Python :: 3.4
  • Python :: 3.5
  • Python :: 3.6

Topic
  • Software Development :: Compilers

Numba is an Open Source NumPy-aware optimizing compiler for Python sponsored by Continuum Analytics, Inc. It uses the remarkable LLVM compiler infrastructure to compile Python syntax to machine code.

It is aware of NumPy arrays as typed memory regions and so can speed-up code using NumPy arrays. Other, less well-typed code will be translated to Python C-API calls effectively removing the “interpreter” but not removing the dynamic indirection.

Numba is also not a tracing JIT. It compiles your code before it gets run either using run-time type information or type information you provide in the decorator.

Numba is a mechanism for producing machine code from Python syntax and typed data structures such as those that exist in NumPy.

Dependencies

  • llvmlite

  • numpy (version 1.7 or higher)

  • funcsigs (for Python 2)

Installing

The easiest way to install numba and get updates is by using the Anaconda Distribution: https://www.continuum.io/downloads

$ conda install numba

If you wanted to compile Numba from source, it is recommended to use conda environment to maintain multiple isolated development environments. To create a new environment for Numba development:

$ conda create -p ~/dev/mynumba python numpy llvmlite

To select the installed version, append “=VERSION” to the package name, where, “VERSION” is the version number. For example:

$ conda create -p ~/dev/mynumba python=2.7 numpy=1.9 llvmlite

to use Python 2.7 and Numpy 1.9.

If you need CUDA support, you should also install the CUDA toolkit:

$ conda install cudatoolkit

This installs the CUDA Toolkit version 7.5, which requires driver version 352.79 or later to be installed.

Custom Python Environments

If you’re not using conda, you will need to build llvmlite yourself:

Building and installing llvmlite

See https://github.com/numba/llvmlite for the most up-to-date instructions. You will need a build of LLVM 3.7.

$ git clone https://github.com/numba/llvmlite
$ cd llvmlite
$ python setup.py install

Installing Numba

$ git clone https://github.com/numba/numba.git
$ cd numba
$ pip install -r requirements.txt
$ python setup.py build_ext --inplace
$ python setup.py install

or simply

$ pip install numba

If you want to enable CUDA support, you will need to install CUDA Toolkit 7.5. After installing the toolkit, you might have to specify environment variables in order to override the standard search paths:

NUMBAPRO_CUDA_DRIVER

Path to the CUDA driver shared library

NUMBAPRO_NVVM

Path to the CUDA libNVVM shared library file

NUMBAPRO_LIBDEVICE

Path to the CUDA libNVVM libdevice directory which contains .bc files

Documentation

http://numba.pydata.org/numba-doc/dev/index.html

Mailing Lists

Join the numba mailing list numba-users@continuum.io: https://groups.google.com/a/continuum.io/d/forum/numba-users

or access it through the Gmane mirror: http://news.gmane.org/gmane.comp.python.numba.user

Some old archives are at: http://librelist.com/browser/numba/

Website

See if our sponsor can help you (which can help this project): http://www.continuum.io

http://numba.pydata.org

Continuous Integration

https://travis-ci.org/numba/numba

0.61.2 Apr 09, 2025
0.61.1rc1 Mar 25, 2025
0.61.0 Jan 20, 2025
0.61.0rc2 Dec 18, 2024
0.61.0rc1 Nov 26, 2024
0.60.0 Jun 13, 2024
0.60.0rc1 May 15, 2024
0.59.1 Mar 19, 2024
0.59.0 Jan 31, 2024
0.59.0rc1 Dec 15, 2023
0.58.1 Oct 18, 2023
0.58.0 Sep 21, 2023
0.58.0rc2 Sep 12, 2023
0.58.0rc1 Aug 18, 2023
0.57.1 Jun 21, 2023
0.57.1rc1 Jun 12, 2023
0.57.0 May 02, 2023
0.57.0rc1 Apr 06, 2023
0.56.4 Nov 04, 2022
0.56.3 Oct 14, 2022
0.56.2 Sep 02, 2022
0.56.0 Jul 26, 2022
0.56.0rc1 Jun 29, 2022
0.55.2 May 26, 2022
0.55.1 Jan 27, 2022
0.55.0 Jan 14, 2022
0.55.0rc1 Dec 16, 2021
0.54.1 Oct 08, 2021
0.54.1rc1 Sep 24, 2021
0.54.0 Aug 20, 2021
0.54.0rc3 Aug 05, 2021
0.54.0rc2 Jul 19, 2021
0.53.1 Mar 26, 2021
0.53.0 Mar 12, 2021
0.53.0rc3 Mar 05, 2021
0.53.0rc2 Feb 26, 2021
0.53.0rc1.post1 Feb 09, 2021
0.52.0 Dec 01, 2020
0.52.0rc3 Nov 19, 2020
0.52.0rc2 Oct 30, 2020
0.51.2 Sep 03, 2020
0.51.1 Aug 27, 2020
0.51.0 Aug 14, 2020
0.51.0rc1 Aug 06, 2020
0.50.1 Jun 25, 2020
0.50.0 Jun 11, 2020
0.50.0rc1 Jun 04, 2020
0.49.1 May 08, 2020
0.49.1rc1 May 01, 2020
0.49.0 Apr 17, 2020
0.48.0 Jan 29, 2020
0.47.0 Jan 03, 2020
0.46.0 Oct 10, 2019
0.45.1 Aug 02, 2019
0.45.0 Jul 19, 2019
0.44.1 Jun 18, 2019
0.44.0 May 30, 2019
0.43.1 Mar 26, 2019
0.43.0 Mar 13, 2019
0.42.1 Feb 01, 2019
0.42.0 Dec 31, 2018
0.41.0 Nov 28, 2018
0.40.1 Oct 10, 2018
0.40.0 Sep 21, 2018
0.39.0 Jul 10, 2018
0.38.1 Jun 01, 2018
0.38.0 Apr 24, 2018
0.37.0 Feb 19, 2018
0.36.2 Dec 20, 2017
0.36.1 Dec 08, 2017
0.35.0 Sep 08, 2017
0.34.0 Jul 07, 2017
0.33.0 May 08, 2017
0.32.0 Apr 10, 2017
0.31.0 Feb 17, 2017
0.30.1 Jan 13, 2017
0.30.0 Dec 22, 2016
0.29.0 Oct 19, 2016
0.28.1 Aug 31, 2016
0.27.0 Jul 11, 2016
0.26.0 May 23, 2016
0.25.0 Apr 04, 2016
0.24.0 Mar 03, 2016
0.23.1 Jan 21, 2016
0.23.0 Jan 14, 2016
0.22.1 Nov 04, 2015
0.22.0 Oct 30, 2015
0.21.0 Sep 14, 2015
0.20.0 Jul 02, 2015
0.19.2 Jun 09, 2015
0.19.1 Jun 05, 2015
0.18.2 Apr 09, 2015
0.18.1 Apr 03, 2015
0.17.0 Feb 04, 2015
0.16.0 Dec 16, 2014
0.15.1 Oct 15, 2014
0.14.0 Sep 11, 2014
0.13.4 Aug 01, 2014
0.13.3 Jul 11, 2014
0.13.2 Jun 09, 2014
0.13.0 Mar 21, 2014
0.12.2 Mar 04, 2014
0.12.1 Feb 20, 2014
0.12.0 Feb 10, 2014
0.11.0 Sep 26, 2013
0.10.1 Sep 04, 2013
0.10.0 Aug 05, 2013
0.9.0 Jun 04, 2013
0.8.1 May 03, 2013
0.8.0 Apr 16, 2013
0.7.2 Mar 20, 2013
0.7.1 Mar 11, 2013
0.7.0 Mar 04, 2013
0.6.0 Feb 05, 2013
0.5.0 Jan 19, 2013
0.3 Nov 11, 2012
0.2 Oct 04, 2012
0.1 Aug 15, 2012
No dependencies