A Python wrapper for openjpeg, with a focus on use as a plugin for for pylibjpeg
Project Links
Meta
Author: pylibjpeg-openjpeg contributors
Maintainer: scaramallion
Requires Python: >=3.9,<4.0
Classifiers
Development Status
- 5 - Production/Stable
Intended Audience
- Developers
- Healthcare Industry
- Science/Research
License
- OSI Approved :: MIT License
Natural Language
- English
Operating System
- OS Independent
Programming Language
- Python :: 3
- Python :: 3.9
- Python :: 3.10
- Python :: 3.11
- Python :: 3.12
- Python :: 3.13
- Python :: 3.14
Topic
- Scientific/Engineering :: Medical Science Apps.
- Software Development :: Libraries
pylibjpeg-openjpeg
A Python 3.8+ wrapper for openjpeg, with a focus on use as a plugin for pylibjpeg.
Linux, OSX and Windows are all supported.
Installation
Dependencies
Installing the current release
python -m pip install -U pylibjpeg-openjpeg
Installing the development version
Make sure Python, Git and CMake are installed. For Windows, you also need to install Microsoft's C++ Build Tools.
git clone --recurse-submodules https://github.com/pydicom/pylibjpeg-openjpeg
python -m pip install pylibjpeg-openjpeg
Supported JPEG Formats
Decoding
ISO/IEC Standard | ITU Equivalent | JPEG Format |
---|---|---|
15444-1 | T.800 | JPEG 2000 |
Encoding
Encoding of NumPy ndarrays is supported for the following:
- Array dtype: bool, uint8, int8, uint16, int16, uint32 and int32 (1-24 bit-depth only)
- Array shape: (rows, columns) and (rows, columns, planes)
- Number of rows/columns: up to 65535
- Number of planes: 1, 3 or 4
Transfer Syntaxes
UID | Description |
---|---|
1.2.840.10008.1.2.4.90 | JPEG 2000 Image Compression (Lossless Only) |
1.2.840.10008.1.2.4.91 | JPEG 2000 Image Compression |
1.2.840.10008.1.2.4.201 | High-Throughput JPEG 2000 Image Compression (Lossless Only) |
1.2.840.10008.1.2.4.202 | High-Throughput JPEG 2000 with RPCL Options Image Compression (Lossless Only) |
1.2.840.10008.1.2.4.203 | High-Throughput JPEG 2000 Image Compression |
Usage
With pylibjpeg and pydicom
from pydicom import dcmread
from pydicom.data import get_testdata_file
ds = dcmread(get_testdata_file('JPEG2000.dcm'))
arr = ds.pixel_array
Standalone JPEG decoding
You can also decode JPEG 2000 images to a numpy ndarray:
from openjpeg import decode
with open('filename.j2k', 'rb') as f:
# Returns a numpy array
arr = decode(f)
# Or simply...
arr = decode('filename.j2k')
Standalone JPEG encoding
Lossless encoding of RGB with multiple-component transformation:
import numpy as np
from openjpeg import encode_array
arr = np.random.randint(low=0, high=65536, size=(100, 100, 3), dtype="uint8")
encode_array(arr, photometric_interpretation=1) # 1: sRGB
Lossy encoding of a monochrome image using compression ratios:
import numpy as np
from openjpeg import encode_array
arr = np.random.randint(low=-2**15, high=2**15, size=(100, 100), dtype="int8")
# You must determine your own values for `compression_ratios`
# as these are for illustration purposes only
encode_array(arr, compression_ratios=[5, 2])
Lossy encoding of a monochrome image using peak signal-to-noise ratios:
import numpy as np
from openjpeg import encode_array
arr = np.random.randint(low=-2**15, high=2**15, size=(100, 100), dtype="int8")
# You must determine your own values for `signal_noise_ratios`
# as these are for illustration purposes only
encode_array(arr, signal_noise_ratios=[50, 80, 100])
See the docstring for the encode_array() function for full details.
Aug 19, 2025
2.5.0
Oct 28, 2024
2.4.0
Jun 18, 2024
2.3.0
Jun 17, 2024
2.2.2
Mar 25, 2024
2.2.1
Mar 23, 2024
2.2.0
Jan 20, 2024
2.1.1
Jan 13, 2024
2.1.0
Jan 07, 2024
2.0.0
Feb 20, 2023
1.3.2
Jan 16, 2023
1.3.1
Dec 17, 2022
1.3.0
Feb 03, 2022
1.2.1
Jan 22, 2022
1.2.0
Apr 10, 2021
1.1.1
Apr 10, 2021
1.1.0
Jun 15, 2020
1.0.1
Jun 12, 2020
1.0.0
Wheel compatibility matrix
Files in release
Extras:
None
Dependencies:
(<3.0,>=2.0)
numpy