Neptune.ai scikit-learn integration library
Project Links
Meta
Author: neptune.ai
Requires Python: >=3.7,<4.0
Classifiers
Development Status
- 5 - Production/Stable
Environment
- Console
Intended Audience
- Developers
- Science/Research
License
- OSI Approved :: Apache Software License
Natural Language
- English
Operating System
- MacOS
- Microsoft :: Windows
- POSIX
- Unix
Programming Language
- Python :: 3
- Python :: 3.7
- Python :: 3.8
- Python :: 3.9
- Python :: 3.10
- Python :: 3.11
- Python :: 3.12
- Python :: Implementation :: CPython
Topic
- Scientific/Engineering :: Artificial Intelligence
- Software Development :: Libraries :: Python Modules
Neptune + scikit-learn integration
Experiment tracking for scikit-learn–trained models.
What will you get with this integration?
- Log, organize, visualize, and compare ML experiments in a single place
- Monitor model training live
- Version and query production-ready models and associated metadata (e.g., datasets)
- Collaborate with the team and across the organization
What will be logged to Neptune?
- classifier and regressor parameters,
- pickled model,
- test predictions,
- test predictions probabilities,
- test scores,
- classifier and regressor visualizations, like confusion matrix, precision-recall chart, and feature importance chart,
- KMeans cluster labels and clustering visualizations,
- metadata including git summary info,
- other metadata

Resources
Example
# On the command line:
pip install neptune-sklearn
# In Python, prepare a fitted estimator
parameters = {
"n_estimators": 70, "max_depth": 7, "min_samples_split": 3
}
estimator = ...
estimator.fit(X_train, y_train)
# Import Neptune and start a run
import neptune
run = neptune.init_run(
project="common/sklearn-integration",
api_token=neptune.ANONYMOUS_API_TOKEN,
)
# Log parameters and scores
run["parameters"] = parameters
y_pred = estimator.predict(X_test)
run["scores/max_error"] = max_error(y_test, y_pred)
run["scores/mean_absolute_error"] = mean_absolute_error(y_test, y_pred)
run["scores/r2_score"] = r2_score(y_test, y_pred)
# Stop the run
run.stop()
Support
If you got stuck or simply want to talk to us, here are your options:
- Check our FAQ page
- You can submit bug reports, feature requests, or contributions directly to the repository.
- Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
- You can just shoot us an email at support@neptune.ai
2.1.4
Jul 05, 2024
2.1.3
Apr 10, 2024
2.1.2
Jan 28, 2024
2.1.1
Jan 17, 2024
2.1.0
Mar 16, 2023
2.0.0
Feb 10, 2023
0.9.7
Nov 07, 2022
0.9.6
Jun 22, 2022
0.9.5
Jun 18, 2021
0.9.4
Jun 17, 2021
0.9.3
May 27, 2021
0.9.2
Apr 29, 2021
0.9.1
Mar 25, 2021
0.9.0
Mar 24, 2021
0.0.3
Mar 23, 2021
0.0.2
Mar 19, 2021
0.0.1
Mar 19, 2021
Wheel compatibility matrix
Files in release
Extras:
Dependencies:
importlib-metadata
scikit-learn
(>=0.24.1)
scikit-plot
(>=0.3.7)
scipy
(<1.12)
yellowbrick
(>=1.3)