magic-impute 3.0.0


pip install magic-impute

  Latest version

Released: Mar 11, 2021

Project Links

Meta
Requires Python: >=3.6

Classifiers

Development Status
  • 5 - Production/Stable

Environment
  • Console

Framework
  • Jupyter

Intended Audience
  • Developers
  • Science/Research

Natural Language
  • English

Operating System
  • MacOS :: MacOS X
  • Microsoft :: Windows
  • POSIX :: Linux

Programming Language
  • Python :: 2
  • Python :: 2.7
  • Python :: 3
  • Python :: 3.5
  • Python :: 3.6

Topic
  • Scientific/Engineering :: Bio-Informatics
Latest PyPi version Latest CRAN version GitHub Actions Build Read the Docs Cell Publication DOI Twitter GitHub stars

Markov Affinity-based Graph Imputation of Cells (MAGIC) is an algorithm for denoising high-dimensional data most commonly applied to single-cell RNA sequencing data. MAGIC learns the manifold data, using the resultant graph to smooth the features and restore the structure of the data.

To see how MAGIC can be applied to single-cell RNA-seq, elucidating the epithelial-to-mesenchymal transition, read our publication in Cell.

David van Dijk, et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. 2018. Cell.

For R and MATLAB implementations of MAGIC, see https://github.com/KrishnaswamyLab/MAGIC.

Magic reveals the interaction between Vimentin (VIM), Cadherin-1 (CDH1), and Zinc finger E-box-binding homeobox 1 (ZEB1, encoded by colors).

Magic reveals the interaction between Vimentin (VIM), Cadherin-1 (CDH1), and Zinc finger E-box-binding homeobox 1 (ZEB1, encoded by colors).

Installation

Installation with pip

To install with pip, run the following from a terminal:

pip install --user magic-impute

Installation from GitHub

To clone the repository and install manually, run the following from a terminal:

git clone git://github.com/KrishnaswamyLab/MAGIC.git
cd MAGIC/python
python setup.py install --user

Usage

Example data

The following code runs MAGIC on test data located in the MAGIC repository:

import magic
import pandas as pd
import matplotlib.pyplot as plt
X = pd.read_csv("MAGIC/data/test_data.csv")
magic_operator = magic.MAGIC()
X_magic = magic_operator.fit_transform(X, genes=['VIM', 'CDH1', 'ZEB1'])
plt.scatter(X_magic['VIM'], X_magic['CDH1'], c=X_magic['ZEB1'], s=1, cmap='inferno')
plt.show()
magic.plot.animate_magic(X, gene_x='VIM', gene_y='CDH1', gene_color='ZEB1', operator=magic_operator)

Interactive command line

We have included two tutorial notebooks on MAGIC usage and results visualization for single cell RNA-seq data.

EMT data notebook: http://nbviewer.jupyter.org/github/KrishnaswamyLab/magic/blob/master/python/tutorial_notebooks/emt_tutorial.ipynb

Bone Marrow data notebook: http://nbviewer.jupyter.org/github/KrishnaswamyLab/magic/blob/master/python/tutorial_notebooks/bonemarrow_tutorial.ipynb

Help

If you have any questions or require assistance using MAGIC, please contact us at https://krishnaswamylab.org/get-help.

Wheel compatibility matrix

Platform Python 3
any

Files in release

Extras:
Dependencies:
numpy (>=1.14.0)
scipy (>=1.1.0)
matplotlib
scikit-learn (>=0.19.1)
future
tasklogger (>=1.0.0)
graphtools (>=1.4.0)
pandas (>=0.25)
scprep (>=1.0)