lifelines 0.30.0


pip install lifelines

  Latest version

Released: Oct 29, 2024

Project Links

Meta
Author: Cameron Davidson-Pilon
Requires Python: >=3.9

Classifiers

Development Status
  • 4 - Beta

License
  • OSI Approved :: MIT License

Programming Language
  • Python
  • Python :: 3.9
  • Python :: 3.10
  • Python :: 3.11

Topic
  • Scientific/Engineering

PyPI version Anaconda-Server Badge DOI

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical community. Its purpose was to answer why do events occur now versus later under uncertainty (where events might refer to deaths, disease remission, etc.). This is great for researchers who are interested in measuring lifetimes: they can answer questions like what factors might influence deaths?

But outside of medicine and actuarial science, there are many other interesting and exciting applications of survival analysis. For example:

  • SaaS providers are interested in measuring subscriber lifetimes, or time to some first action
  • inventory stock out is a censoring event for true "demand" of a good.
  • sociologists are interested in measuring political parties' lifetimes, or relationships, or marriages
  • A/B tests to determine how long it takes different groups to perform an action.

lifelines is a pure Python implementation of the best parts of survival analysis.

Documentation and intro to survival analysis

If you are new to survival analysis, wondering why it is useful, or are interested in lifelines examples, API, and syntax, please read the Documentation and Tutorials page

Contact

Development

See our Contributing guidelines.

0.30.0 Oct 29, 2024
0.29.0 Jun 26, 2024
0.28.0 Jan 03, 2024
0.27.8 Sep 13, 2023
0.27.7 May 01, 2023
0.27.6 Apr 27, 2023
0.27.5 Apr 27, 2023
0.27.4 Nov 17, 2022
0.27.3 Sep 25, 2022
0.27.2 Sep 08, 2022
0.27.1 Jun 26, 2022
0.27.0 Mar 15, 2022
0.26.4 Nov 30, 2021
0.26.3 Sep 16, 2021
0.26.2 Sep 15, 2021
0.26.0 May 27, 2021
0.25.11 Apr 13, 2021
0.25.10 Mar 03, 2021
0.25.9 Feb 05, 2021
0.25.8 Jan 22, 2021
0.25.7 Dec 09, 2020
0.25.6 Oct 26, 2020
0.25.5 Sep 25, 2020
0.25.4 Aug 26, 2020
0.25.3 Aug 24, 2020
0.25.2 Aug 09, 2020
0.25.1 Aug 01, 2020
0.25.0 Jul 27, 2020
0.24.16 Jul 09, 2020
0.24.15 Jul 07, 2020
0.24.14 Jul 02, 2020
0.24.13 Jun 22, 2020
0.24.12 Jun 20, 2020
0.24.11 Jun 18, 2020
0.24.10 Jun 17, 2020
0.24.9 Jun 05, 2020
0.24.8 May 18, 2020
0.24.7 May 16, 2020
0.24.6 May 05, 2020
0.24.5 May 01, 2020
0.24.4 Apr 14, 2020
0.24.3 Mar 25, 2020
0.24.2 Mar 15, 2020
0.24.1 Mar 06, 2020
0.24.0 Feb 20, 2020
0.23.9 Jan 28, 2020
0.23.8 Jan 21, 2020
0.23.7 Jan 14, 2020
0.23.6 Jan 07, 2020
0.23.5 Jan 05, 2020
0.23.4 Dec 15, 2019
0.23.3 Dec 11, 2019
0.23.2 Dec 07, 2019
0.23.1 Nov 28, 2019
0.23.0 Nov 17, 2019
0.22.10 Nov 08, 2019
0.22.9 Oct 30, 2019
0.22.8 Oct 06, 2019
0.22.7 Sep 30, 2019
0.22.6 Sep 25, 2019
0.22.5 Sep 20, 2019
0.22.4 Sep 04, 2019
0.22.3 Aug 09, 2019
0.22.2 Jul 26, 2019
0.22.1 Jul 14, 2019
0.22.0 Jul 03, 2019
0.21.5 Jun 23, 2019
0.21.3 Jun 06, 2019
0.21.2 May 16, 2019
0.21.1 Apr 26, 2019
0.21.0 Apr 12, 2019
0.20.5 Apr 08, 2019
0.20.4 Mar 27, 2019
0.20.3 Mar 23, 2019
0.20.2 Mar 21, 2019
0.20.1 Mar 16, 2019
0.20.0 Mar 06, 2019
0.19.5 Feb 26, 2019
0.19.4 Feb 26, 2019
0.19.3 Feb 25, 2019
0.19.2 Feb 22, 2019
0.19.1 Feb 21, 2019
0.19.0 Feb 20, 2019
0.18.6 Feb 14, 2019
0.18.5 Feb 11, 2019
0.18.4 Feb 10, 2019
0.18.3 Feb 07, 2019
0.18.2 Feb 05, 2019
0.18.1 Feb 02, 2019
0.18.0 Feb 01, 2019
0.17.5 Jan 25, 2019
0.17.4 Jan 25, 2019
0.17.3 Jan 24, 2019
0.17.2 Jan 22, 2019
0.17.1 Jan 20, 2019
0.17.0 Jan 11, 2019
0.16.3 Jan 03, 2019
0.16.2 Jan 02, 2019
0.16.1 Jan 02, 2019
0.16.0 Jan 01, 2019
0.15.4 Dec 19, 2018
0.15.3 Dec 12, 2018
0.15.2 Dec 12, 2018
0.15.1 Nov 23, 2018
0.15.0 Nov 22, 2018
0.14.6 Jul 02, 2018
0.14.5 Jun 30, 2018
0.14.4 Jun 14, 2018
0.14.3 May 24, 2018
0.14.2 May 19, 2018
0.14.1 Apr 01, 2018
0.14.0 Mar 04, 2018
0.13.0 Dec 22, 2017
0.12.0 Nov 08, 2017
0.11.2 Aug 05, 2017
0.11.1 Jun 22, 2017
0.11.0 Jun 22, 2017
0.10.1 Jun 06, 2017
0.10.0 May 29, 2017
0.9.4 Jan 01, 2017
0.9.3.2 Nov 08, 2016
0.9.3.1 Nov 08, 2016
0.9.2 May 23, 2016
0.9.1.0 Mar 20, 2016
0.9.0.0 Jan 10, 2016
0.8.1.0 Dec 20, 2015
0.8.0.2 Nov 22, 2015
0.8.0.1 Oct 31, 2015
0.8.0.0 Aug 01, 2015
0.7.1.0 Jun 22, 2015
0.7.0.0 Mar 01, 2015
0.6.1.0 Feb 24, 2015
0.6.0.0 Feb 06, 2015
0.5.1.0 Dec 24, 2014
0.5.0.0 Dec 07, 2014
0.4.4.0 Nov 27, 2014
0.4.3.1 Nov 16, 2014
0.4.3 Jul 24, 2014
0.4.2 Jun 19, 2014
0.4.1.1 Jun 12, 2014
0.4.0.0 Jun 08, 2014
0.3.2.3 May 30, 2014
0.3.2.2 May 29, 2014
0.3.2.1 May 29, 2014
0.3.2.0.2 May 26, 2014
0.3.2.0 Apr 23, 2014
0.3.1.5 Apr 15, 2014
0.3.1.2 Apr 13, 2014
0.3.1.0 Apr 11, 2014
0.3.0.0 Apr 04, 2014
0.2.3.0.7 Mar 11, 2014
0.2.3.0.6 Mar 11, 2014
0.2.3.0.5 Mar 10, 2014
0.2.3.0.4 Mar 09, 2014
0.2.3.0.3 Mar 09, 2014
0.2.3.0.2 Mar 09, 2014
0.2.3.0.1 Mar 09, 2014
0.2.3.0 Mar 09, 2014
0.2.2.12 Mar 05, 2014
0.2.2.11 Mar 02, 2014
0.2.2.10 Mar 02, 2014
0.2.2.9 Mar 02, 2014
0.2.2.8 Mar 01, 2014
0.2.2.7 Feb 17, 2014
0.2.2.6 Feb 08, 2014
0.2.2.5 Feb 07, 2014
0.2.2.4 Jan 25, 2014
0.2.2.3 Jan 21, 2014
0.2.2.2 Jan 03, 2014
0.2.1.1 Dec 19, 2013
0.2.1 Dec 19, 2013
0.2.0 Dec 10, 2013
0.2.2.7.macosx Feb 17, 2014
0.2.2.2.macosx Jan 03, 2014
0.2.0.macosx Dec 10, 2013

Wheel compatibility matrix

Platform Python 3
any

Files in release

Extras: None
Dependencies:
numpy (>=1.14.0)
scipy (>=1.7.0)
pandas (>=2.1)
matplotlib (>=3.0)
autograd (>=1.5)
autograd-gamma (>=0.3)
formulaic (>=0.2.2)