faker 37.11.0


pip install faker

  Latest version

Released: Oct 07, 2025


Meta
Author: joke2k
Requires Python: >=3.9

Classifiers

Development Status
  • 5 - Production/Stable

Environment
  • Console

Intended Audience
  • Developers

Programming Language
  • Python :: 3.9
  • Python :: 3.10
  • Python :: 3.11
  • Python :: 3.12
  • Python :: 3.13
  • Python :: Implementation :: CPython
  • Python :: Implementation :: PyPy

Topic
  • Software Development :: Libraries :: Python Modules
  • Software Development :: Testing
  • Utilities

License
  • OSI Approved :: MIT License

Faker is a Python package that generates fake data for you. Whether you need to bootstrap your database, create good-looking XML documents, fill-in your persistence to stress test it, or anonymize data taken from a production service, Faker is for you.

Faker is heavily inspired by PHP Faker, Perl Faker, and by Ruby Faker.


_|_|_|_|          _|
_|        _|_|_|  _|  _|      _|_|    _|  _|_|
_|_|_|  _|    _|  _|_|      _|_|_|_|  _|_|
_|      _|    _|  _|  _|    _|        _|
_|        _|_|_|  _|    _|    _|_|_|  _|

Latest version released on PyPI Build status of the master branch Test coverage Package license


Compatibility

Starting from version 4.0.0, Faker dropped support for Python 2 and from version 5.0.0 only supports Python 3.8 and above. If you still need Python 2 compatibility, please install version 3.0.1 in the meantime, and please consider updating your codebase to support Python 3 so you can enjoy the latest features Faker has to offer. Please see the extended docs for more details, especially if you are upgrading from version 2.0.4 and below as there might be breaking changes.

This package was also previously called fake-factory which was already deprecated by the end of 2016, and much has changed since then, so please ensure that your project and its dependencies do not depend on the old package.

Basic Usage

Install with pip:

pip install Faker

Use faker.Faker() to create and initialize a faker generator, which can generate data by accessing properties named after the type of data you want.

from faker import Faker
fake = Faker()

fake.name()
# 'Lucy Cechtelar'

fake.address()
# '426 Jordy Lodge
#  Cartwrightshire, SC 88120-6700'

fake.text()
# 'Sint velit eveniet. Rerum atque repellat voluptatem quia rerum. Numquam excepturi
#  beatae sint laudantium consequatur. Magni occaecati itaque sint et sit tempore. Nesciunt
#  amet quidem. Iusto deleniti cum autem ad quia aperiam.
#  A consectetur quos aliquam. In iste aliquid et aut similique suscipit. Consequatur qui
#  quaerat iste minus hic expedita. Consequuntur error magni et laboriosam. Aut aspernatur
#  voluptatem sit aliquam. Dolores voluptatum est.
#  Aut molestias et maxime. Fugit autem facilis quos vero. Eius quibusdam possimus est.
#  Ea quaerat et quisquam. Deleniti sunt quam. Adipisci consequatur id in occaecati.
#  Et sint et. Ut ducimus quod nemo ab voluptatum.'

Each call to method fake.name() yields a different (random) result. This is because faker forwards faker.Generator.method_name() calls to faker.Generator.format(method_name).

for _ in range(10):
  print(fake.name())

# 'Adaline Reichel'
# 'Dr. Santa Prosacco DVM'
# 'Noemy Vandervort V'
# 'Lexi O'Conner'
# 'Gracie Weber'
# 'Roscoe Johns'
# 'Emmett Lebsack'
# 'Keegan Thiel'
# 'Wellington Koelpin II'
# 'Ms. Karley Kiehn V'

Pytest fixtures

Faker also has its own pytest plugin which provides a faker fixture you can use in your tests. Please check out the pytest fixture docs to learn more.

Providers

Each of the generator properties (like name, address, and lorem) are called “fake”. A faker generator has many of them, packaged in “providers”.

from faker import Faker
from faker.providers import internet

fake = Faker()
fake.add_provider(internet)

print(fake.ipv4_private())

Check the extended docs for a list of bundled providers and a list of community providers.

Localization

faker.Faker can take a locale as an argument, to return localized data. If no localized provider is found, the factory falls back to the default LCID string for US english, ie: en_US.

from faker import Faker
fake = Faker('it_IT')
for _ in range(10):
    print(fake.name())

# 'Elda Palumbo'
# 'Pacifico Giordano'
# 'Sig. Avide Guerra'
# 'Yago Amato'
# 'Eustachio Messina'
# 'Dott. Violante Lombardo'
# 'Sig. Alighieri Monti'
# 'Costanzo Costa'
# 'Nazzareno Barbieri'
# 'Max Coppola'

faker.Faker also supports multiple locales. New in v3.0.0.

from faker import Faker
fake = Faker(['it_IT', 'en_US', 'ja_JP'])
for _ in range(10):
    print(fake.name())

# 鈴木 陽一
# Leslie Moreno
# Emma Williams
# 渡辺 裕美子
# Marcantonio Galuppi
# Martha Davis
# Kristen Turner
# 中津川 春香
# Ashley Castillo
# 山田 桃子

You can check available Faker locales in the source code, under the providers package. The localization of Faker is an ongoing process, for which we need your help. Please don’t hesitate to create a localized provider for your own locale and submit a Pull Request (PR).

Optimizations

The Faker constructor takes a performance-related argument called use_weighting. It specifies whether to attempt to have the frequency of values match real-world frequencies (e.g. the English name Gary would be much more frequent than the name Lorimer). If use_weighting is False, then all items have an equal chance of being selected, and the selection process is much faster. The default is True.

Command line usage

When installed, you can invoke faker from the command-line:

faker [-h] [--version] [-o output]
      [-l {bg_BG,cs_CZ,...,zh_CN,zh_TW}]
      [-r REPEAT] [-s SEP]
      [-i {package.containing.custom_provider otherpkg.containing.custom_provider}]
      [fake] [fake argument [fake argument ...]]

Where:

  • faker: is the script when installed in your environment, in development you could use python -m faker instead

  • -h, --help: shows a help message

  • --version: shows the program’s version number

  • -o FILENAME: redirects the output to the specified filename

  • -l {bg_BG,cs_CZ,...,zh_CN,zh_TW}: allows use of a localized provider

  • -r REPEAT: will generate a specified number of outputs

  • -s SEP: will generate the specified separator after each generated output

  • -i {my.custom_provider other.custom_provider} list of additional custom providers to use. Note that is the import path of the package containing your Provider class, not the custom Provider class itself.

  • fake: is the name of the fake to generate an output for, such as name, address, or text

  • [fake argument ...]: optional arguments to pass to the fake (e.g. the profile fake takes an optional list of comma separated field names as the first argument)

Examples:

$ faker address
968 Bahringer Garden Apt. 722
Kristinaland, NJ 09890

$ faker -l de_DE address
Samira-Niemeier-Allee 56
94812 Biedenkopf

$ faker profile ssn,birthdate
{'ssn': '628-10-1085', 'birthdate': '2008-03-29'}

$ faker -r=3 -s=";" name
Willam Kertzmann;
Josiah Maggio;
Gayla Schmitt;

How to create a Provider

from faker import Faker
fake = Faker()

# first, import a similar Provider or use the default one
from faker.providers import BaseProvider

# create new provider class
class MyProvider(BaseProvider):
    def foo(self) -> str:
        return 'bar'

# then add new provider to faker instance
fake.add_provider(MyProvider)

# now you can use:
fake.foo()
# 'bar'

How to create a Dynamic Provider

Dynamic providers can read elements from an external source.

from faker import Faker
from faker.providers import DynamicProvider

medical_professions_provider = DynamicProvider(
     provider_name="medical_profession",
     elements=["dr.", "doctor", "nurse", "surgeon", "clerk"],
)

fake = Faker()

# then add new provider to faker instance
fake.add_provider(medical_professions_provider)

# now you can use:
fake.medical_profession()
# 'dr.'

How to customize the Lorem Provider

You can provide your own sets of words if you don’t want to use the default lorem ipsum one. The following example shows how to do it with a list of words picked from cakeipsum :

from faker import Faker
fake = Faker()

my_word_list = [
'danish','cheesecake','sugar',
'Lollipop','wafer','Gummies',
'sesame','Jelly','beans',
'pie','bar','Ice','oat' ]

fake.sentence()
# 'Expedita at beatae voluptatibus nulla omnis.'

fake.sentence(ext_word_list=my_word_list)
# 'Oat beans oat Lollipop bar cheesecake.'

How to use with Factory Boy

Factory Boy already ships with integration with Faker. Simply use the factory.Faker method of factory_boy:

import factory
from myapp.models import Book

class BookFactory(factory.Factory):
    class Meta:
        model = Book

    title = factory.Faker('sentence', nb_words=4)
    author_name = factory.Faker('name')

Accessing the random instance

The .random property on the generator returns the instance of random.Random used to generate the values:

from faker import Faker
fake = Faker()
fake.random
fake.random.getstate()

By default all generators share the same instance of random.Random, which can be accessed with from faker.generator import random. Using this may be useful for plugins that want to affect all faker instances.

Unique values

Through use of the .unique property on the generator, you can guarantee that any generated values are unique for this specific instance.

from faker import Faker
fake = Faker()
names = [fake.unique.first_name() for i in range(500)]
assert len(set(names)) == len(names)

Calling fake.unique.clear() clears the already seen values. Note, to avoid infinite loops, after a number of attempts to find a unique value, Faker will throw a UniquenessException. Beware of the birthday paradox, collisions are more likely than you’d think.

from faker import Faker

fake = Faker()
for i in range(3):
     # Raises a UniquenessException
     fake.unique.boolean()

In addition, only hashable arguments and return values can be used with .unique.

Seeding the Generator

When using Faker for unit testing, you will often want to generate the same data set. For convenience, the generator also provides a seed() method, which seeds the shared random number generator. A Seed produces the same result when the same methods with the same version of faker are called.

from faker import Faker
fake = Faker()
Faker.seed(4321)

print(fake.name())
# 'Margaret Boehm'

Each generator can also be switched to use its own instance of random.Random, separated from the shared one, by using the seed_instance() method, which acts the same way. For example:

from faker import Faker
fake = Faker()
fake.seed_instance(4321)

print(fake.name())
# 'Margaret Boehm'

Please note that as we keep updating datasets, results are not guaranteed to be consistent across patch versions. If you hardcode results in your test, make sure you pinned the version of Faker down to the patch number.

If you are using pytest, you can seed the faker fixture by defining a faker_seed fixture. Please check out the pytest fixture docs to learn more.

Tests

Run tests:

$ tox

Write documentation for the providers of the default locale:

$ python -m faker > docs.txt

Write documentation for the providers of a specific locale:

$ python -m faker --lang=de_DE > docs_de.txt

Contribute

Please see CONTRIBUTING.

License

Faker is released under the MIT License. See the bundled LICENSE file for details.

Credits

37.11.0 Oct 07, 2025
37.9.0 Oct 07, 2025
37.8.0 Sep 15, 2025
37.7.0 Sep 15, 2025
37.6.0 Aug 26, 2025
37.5.3 Jul 30, 2025
37.5.2 Jul 30, 2025
37.5.1 Jul 30, 2025
37.5.0 Jul 30, 2025
37.4.3 Jul 30, 2025
37.4.2 Jul 15, 2025
37.4.1 Jul 15, 2025
37.4.0 Jun 11, 2025
37.3.0 May 14, 2025
37.2.1 May 14, 2025
37.2.0 May 14, 2025
37.1.1 May 14, 2025
37.1.0 Mar 24, 2025
37.0.2 Mar 19, 2025
37.0.1 Mar 18, 2025
37.0.0 Mar 07, 2025
36.2.3 Mar 07, 2025
36.2.2 Mar 05, 2025
36.2.1 Mar 05, 2025
36.2.0 Mar 05, 2025
36.1.1 Feb 13, 2025
36.1.0 Feb 10, 2025
36.0.0 Feb 10, 2025
35.2.2 Feb 10, 2025
35.2.1 Feb 10, 2025
35.2.0 Jan 30, 2025
35.1.0 Jan 30, 2025
35.0.0 Jan 23, 2025
34.0.2 Jan 22, 2025
34.0.1 Jan 22, 2025
34.0.0 Jan 22, 2025
33.3.1 Jan 10, 2025
33.3.0 Jan 03, 2025
33.2.0 Jan 03, 2025
33.1.3 Jan 03, 2025
33.1.2 Jan 03, 2025
33.1.1 Jan 03, 2025
33.1.0 Nov 27, 2024
33.0.0 Nov 14, 2024
32.1.0 Nov 12, 2024
32.0.0 Nov 12, 2024
31.0.0 Nov 12, 2024
30.10.0 Nov 12, 2024
30.9.0 Nov 12, 2024
30.8.2 Oct 31, 2024
30.8.1 Oct 24, 2024
30.8.0 Oct 21, 2024
30.7.0 Oct 21, 2024
30.6.0 Oct 16, 2024
30.5.0 Oct 16, 2024
30.4.0 Oct 15, 2024
30.3.0 Oct 07, 2024
30.2.0 Oct 07, 2024
30.1.0 Sep 30, 2024
30.0.0 Sep 25, 2024
29.0.0 Sep 19, 2024
28.4.1 Sep 04, 2024
28.4.0 Sep 04, 2024
28.3.0 Sep 04, 2024
28.2.0 Sep 04, 2024
28.1.0 Aug 30, 2024
28.0.0 Aug 23, 2024
27.4.0 Aug 21, 2024
27.3.0 Aug 21, 2024
27.2.0 Aug 21, 2024
27.1.0 Aug 21, 2024
27.0.0 Aug 12, 2024
26.3.0 Aug 08, 2024
26.2.0 Aug 06, 2024
26.1.0 Aug 01, 2024
26.0.0 Jun 26, 2024
25.9.2 Jun 25, 2024
25.9.1 Jun 20, 2024
25.9.0 Jun 20, 2024
25.8.0 Jun 07, 2024
25.7.0 Jun 07, 2024
25.6.0 Jun 06, 2024
25.5.0 Jun 04, 2024
25.4.0 Jun 03, 2024
25.3.0 May 28, 2024
25.2.0 May 13, 2024
25.1.0 May 08, 2024
25.0.1 May 02, 2024
25.0.0 Apr 29, 2024
24.14.1 Apr 28, 2024
24.14.0 Apr 25, 2024
24.13.0 Apr 25, 2024
24.12.0 Apr 25, 2024
24.11.0 Apr 17, 2024
24.10.0 Apr 17, 2024
24.9.0 Apr 12, 2024
24.8.0 Apr 09, 2024
24.7.1 Apr 05, 2024
24.7.0 Apr 05, 2024
24.6.0 Apr 05, 2024
24.5.0 Apr 05, 2024
24.4.0 Mar 25, 2024
24.3.0 Mar 18, 2024
24.2.1 Mar 18, 2024
24.2.0 Mar 13, 2024
24.1.1 Mar 13, 2024
24.1.0 Mar 08, 2024
24.0.0 Mar 04, 2024
23.3.0 Feb 27, 2024
23.2.1 Feb 16, 2024
23.2.0 Feb 14, 2024
23.1.0 Feb 07, 2024
23.0.0 Feb 06, 2024
22.7.0 Feb 05, 2024
22.6.0 Jan 29, 2024
22.5.1 Jan 23, 2024
22.5.0 Jan 22, 2024
22.4.0 Jan 19, 2024
22.3.0 Jan 19, 2024
22.2.0 Jan 10, 2024
22.1.0 Jan 08, 2024
22.0.0 Dec 29, 2023
21.0.1 Dec 29, 2023
21.0.0 Dec 13, 2023
20.1.0 Nov 20, 2023
20.0.3 Nov 14, 2023
20.0.2 Nov 14, 2023
20.0.1 Nov 14, 2023
20.0.0 Nov 10, 2023
19.13.0 Nov 01, 2023
19.12.1 Oct 31, 2023
19.12.0 Oct 24, 2023
19.11.1 Oct 24, 2023
19.11.0 Oct 18, 2023
19.10.0 Oct 11, 2023
19.9.1 Oct 11, 2023
19.9.0 Oct 10, 2023
19.8.1 Oct 10, 2023
19.8.0 Oct 09, 2023
19.7.0 Oct 09, 2023
19.6.2 Sep 20, 2023
19.6.1 Sep 11, 2023
19.6.0 Sep 08, 2023
19.5.0 Sep 08, 2023
19.4.0 Sep 07, 2023
19.3.1 Aug 23, 2023
19.3.0 Aug 07, 2023
19.2.0 Jul 20, 2023
19.1.0 Jul 12, 2023
19.0.0 Jul 11, 2023
18.13.0 Jul 07, 2023
18.12.0 Jul 07, 2023
18.11.2 Jun 27, 2023
18.11.1 Jun 20, 2023
18.11.0 Jun 20, 2023
18.10.1 Jun 02, 2023
18.10.0 Jun 01, 2023
18.9.1 Jun 01, 2023
18.9.0 May 16, 2023
18.8.0 May 16, 2023
18.7.0 May 08, 2023
18.6.2 May 03, 2023
18.6.1 May 02, 2023
18.6.0 Apr 27, 2023
18.5.1 Apr 24, 2023
18.5.0 Apr 24, 2023
18.4.0 Apr 06, 2023
18.3.4 Apr 04, 2023
18.3.3 Apr 04, 2023
18.3.2 Apr 01, 2023
18.3.1 Mar 23, 2023
18.3.0 Mar 21, 2023
18.2.1 Mar 21, 2023
18.2.0 Mar 20, 2023
18.1.0 Mar 20, 2023
18.0.0 Mar 20, 2023
17.6.0 Mar 03, 2023
17.5.0 Mar 01, 2023
17.4.0 Feb 28, 2023
17.3.0 Feb 24, 2023
17.2.0 Feb 24, 2023
17.1.0 Feb 24, 2023
17.0.0 Feb 13, 2023
16.9.0 Feb 13, 2023
16.8.1 Feb 09, 2023
16.8.0 Feb 09, 2023
16.7.1 Feb 09, 2023
16.7.0 Feb 07, 2023
16.6.1 Jan 24, 2023
16.6.0 Jan 17, 2023
16.5.0 Jan 17, 2023
16.4.0 Jan 12, 2023
16.3.0 Jan 10, 2023
16.2.0 Jan 10, 2023
16.1.0 Jan 09, 2023
16.0.1 Jan 09, 2023
16.0.0 Jan 09, 2023
15.3.4 Nov 30, 2022
15.3.3 Nov 22, 2022
15.3.2 Nov 14, 2022
15.3.1 Nov 07, 2022
15.3.0 Nov 07, 2022
15.2.0 Nov 04, 2022
15.1.5 Nov 04, 2022
15.1.4 Nov 04, 2022
15.1.3 Nov 01, 2022
15.1.2 Nov 01, 2022
15.1.1 Oct 13, 2022
15.1.0 Oct 11, 2022
15.0.0 Sep 26, 2022
14.2.1 Sep 22, 2022
14.2.0 Aug 31, 2022
14.1.2 Aug 31, 2022
14.1.1 Aug 30, 2022
14.1.0 Aug 17, 2022
14.0.0 Aug 12, 2022
13.16.0 Aug 12, 2022
13.15.1 Jul 22, 2022
13.15.0 Jul 06, 2022
13.14.0 Jun 22, 2022
13.13.1 Jun 22, 2022
13.13.0 Jun 10, 2022
13.12.1 Jun 06, 2022
13.12.0 May 25, 2022
13.11.1 May 13, 2022
13.11.0 May 09, 2022
13.10.0 May 09, 2022
13.9.0 May 09, 2022
13.8.0 May 09, 2022
13.7.0 May 02, 2022
13.6.0 Apr 27, 2022
13.5.0 Apr 27, 2022
13.4.0 Apr 22, 2022
13.3.5 Apr 20, 2022
13.3.4 Mar 28, 2022
13.3.3 Mar 23, 2022
13.3.2 Mar 14, 2022
13.3.1 Mar 07, 2022
13.3.0 Feb 28, 2022
13.2.0 Feb 22, 2022
13.1.0 Feb 22, 2022
13.0.0 Feb 15, 2022
12.3.3 Feb 14, 2022
12.3.2 Feb 14, 2022
12.3.1 Feb 14, 2022
12.3.0 Feb 10, 2022
12.2.0 Feb 09, 2022
12.1.0 Feb 04, 2022
12.0.1 Feb 04, 2022
12.0.0 Jan 31, 2022
11.4.0 Jan 31, 2022
11.3.0 Jan 05, 2022
11.2.0 Jan 05, 2022
11.1.0 Dec 28, 2021
11.0.0 Dec 27, 2021
10.0.0 Dec 07, 2021
9.9.1 Dec 07, 2021
9.9.0 Nov 29, 2021
9.8.4 Nov 29, 2021
9.8.3 Nov 22, 2021
9.8.2 Nov 15, 2021
9.8.1 Nov 12, 2021
9.8.0 Nov 02, 2021
9.7.1 Oct 27, 2021
9.7.0 Oct 27, 2021
9.6.0 Oct 25, 2021
9.5.3 Oct 25, 2021
9.5.2 Oct 21, 2021
9.5.1 Oct 20, 2021
9.5.0 Oct 19, 2021
9.4.0 Oct 19, 2021
9.3.1 Oct 11, 2021
9.3.0 Oct 11, 2021
9.2.0 Oct 07, 2021
9.1.0 Oct 07, 2021
9.0.1 Oct 07, 2021
9.0.0 Oct 06, 2021
8.16.0 Oct 04, 2021
8.15.0 Oct 04, 2021
8.14.2 Oct 04, 2021
8.14.1 Oct 01, 2021
8.14.0 Sep 24, 2021
8.13.2 Sep 15, 2021
8.13.1 Sep 15, 2021
8.13.0 Sep 15, 2021
8.12.3 Sep 15, 2021
8.12.2 Sep 15, 2021
8.12.1 Aug 24, 2021
8.12.0 Aug 20, 2021
8.11.0 Aug 03, 2021
8.10.3 Jul 26, 2021
8.10.2 Jul 23, 2021
8.10.1 Jul 12, 2021
8.10.0 Jul 07, 2021
8.9.1 Jul 02, 2021
8.9.0 Jun 30, 2021
8.8.2 Jun 23, 2021
8.8.1 Jun 16, 2021
8.8.0 Jun 14, 2021
8.7.0 Jun 11, 2021
8.6.0 Jun 07, 2021
8.5.1 Jun 03, 2021
8.5.0 Jun 02, 2021
8.4.0 May 27, 2021
8.3.0 May 26, 2021
8.2.1 May 21, 2021
8.2.0 May 18, 2021
8.1.4 May 13, 2021
8.1.3 May 10, 2021
8.1.2 Apr 29, 2021
8.1.1 Apr 23, 2021
8.1.0 Apr 13, 2021
8.0.0 Apr 05, 2021
7.0.1 Mar 29, 2021
7.0.0 Mar 29, 2021
6.6.3 Mar 25, 2021
6.6.2 Mar 18, 2021
6.6.1 Mar 15, 2021
6.6.0 Mar 09, 2021
6.5.2 Mar 08, 2021
6.5.1 Mar 08, 2021
6.5.0 Feb 24, 2021
6.4.1 Feb 19, 2021
6.4.0 Feb 19, 2021
6.3.0 Feb 17, 2021
6.2.0 Feb 17, 2021
6.1.1 Feb 09, 2021
6.1.0 Feb 09, 2021
6.0.0 Feb 03, 2021
5.8.0 Jan 26, 2021
5.7.0 Jan 25, 2021
5.6.5 Jan 20, 2021
5.6.4 Jan 20, 2021
5.6.3 Jan 19, 2021
5.6.2 Jan 19, 2021
5.6.1 Jan 15, 2021
5.6.0 Jan 13, 2021
5.5.1 Jan 12, 2021
5.5.0 Jan 11, 2021
5.4.1 Jan 11, 2021
5.4.0 Jan 07, 2021
5.3.0 Dec 30, 2020
5.2.0 Dec 30, 2020
5.1.0 Dec 29, 2020
5.0.2 Dec 15, 2020
5.0.1 Dec 07, 2020
5.0.0 Dec 03, 2020
4.18.0 Nov 30, 2020
4.17.1 Nov 20, 2020
4.17.0 Nov 19, 2020
4.16.0 Nov 17, 2020
4.15.0 Nov 16, 2020
4.14.2 Nov 05, 2020
4.14.1 Nov 04, 2020
4.14.0 Oct 13, 2020
4.13.0 Oct 13, 2020
4.12.0 Oct 13, 2020
4.11.0 Oct 13, 2020
4.10.0 Oct 13, 2020
4.9.0 Oct 08, 2020
4.8.0 Oct 08, 2020
4.7.0 Oct 08, 2020
4.6.0 Oct 08, 2020
4.5.0 Oct 06, 2020
4.4.0 Oct 02, 2020
4.3.0 Oct 02, 2020
4.2.0 Oct 02, 2020
4.1.8 Oct 02, 2020
4.1.7 Oct 02, 2020
4.1.6 Oct 01, 2020
4.1.5 Oct 01, 2020
4.1.4 Sep 30, 2020
4.1.3 Sep 14, 2020
4.1.2 Aug 17, 2020
4.1.1 Jun 16, 2020
4.1.0 May 12, 2020
4.0.3 Apr 13, 2020
4.0.2 Mar 13, 2020
4.0.1 Feb 17, 2020
4.0.0 Jan 14, 2020
3.0.1 Jan 14, 2020
3.0.0 Dec 04, 2019
2.0.5 Dec 03, 2019
2.0.4 Nov 13, 2019
2.0.3 Oct 14, 2019
2.0.2 Sep 17, 2019
2.0.1 Aug 20, 2019
2.0.0 Jul 15, 2019
1.0.8 Jul 15, 2019
1.0.7 May 14, 2019
1.0.6 May 08, 2019
1.0.5 Apr 12, 2019
1.0.4 Mar 12, 2019
1.0.3 Mar 12, 2019
1.0.2 Jan 22, 2019
1.0.1 Dec 12, 2018
1.0.0 Nov 13, 2018
0.9.3 Nov 13, 2018
0.9.2 Oct 12, 2018
0.9.1 Sep 13, 2018
0.9.0 Aug 13, 2018
0.8.18 Aug 13, 2018
0.8.17 Jul 12, 2018
0.8.16 Jun 15, 2018
0.8.15 May 14, 2018
0.8.14 May 11, 2018
0.8.13 Apr 12, 2018
0.8.12 Mar 12, 2018
0.8.11 Feb 12, 2018
0.8.10 Jan 16, 2018
0.8.9 Jan 12, 2018
0.8.8 Dec 19, 2017
0.8.7 Nov 14, 2017
0.8.6 Oct 16, 2017
0.8.5 Oct 13, 2017
0.8.4 Sep 22, 2017
0.8.3 Sep 05, 2017
0.8.2 Sep 05, 2017
0.8.1 Aug 31, 2017
0.8.0 Aug 28, 2017
0.7.18 Jul 19, 2017
0.7.17 Jun 12, 2017
0.7.16 Jun 09, 2017
0.7.15 Jun 02, 2017
0.7.14 Jun 02, 2017
0.7.13 Jun 02, 2017
0.7.12 May 10, 2017
0.7.11 Apr 09, 2017
0.7.10 Mar 13, 2017
0.7.9 Feb 26, 2017
0.7.8 Feb 24, 2017
0.7.7 Dec 20, 2016
0.7.6 Dec 19, 2016
0.7.5 Dec 16, 2016
0.7.4 Dec 16, 2016
0.7.3 Sep 16, 2016
0.7.1 Sep 16, 2016
0.7.0 Sep 16, 2016
0.1.4 Mar 15, 2016
0.1.3 Mar 15, 2016
0.1.2 Mar 15, 2016
0.1.1 Mar 15, 2016
0.1.0 Mar 13, 2016
0.0.4 Dec 23, 2010
0.0.3 Dec 23, 2010
0.0.2 Dec 23, 2010

Wheel compatibility matrix

Platform Python 3
any

Files in release

Extras: None
Dependencies:
tzdata