Programming Language
- Python :: 3.9
- Python :: 3.10
- Python :: 3.11
- Python :: 3.12
License
- OSI Approved :: MIT License
Operating System
- OS Independent
Development Status
- 3 - Alpha
|MIT license| |PyPI| |Discord| |StackOverflow|
Fairlearn
Fairlearn is a Python package that empowers developers of artificial intelligence (AI) systems to assess their system's fairness and mitigate any observed unfairness issues. Fairlearn contains mitigation algorithms as well as metrics for model assessment. Besides the source code, this repository also contains Jupyter notebooks with examples of Fairlearn usage.
Website: https://fairlearn.org/
What we mean by *fairness* <#what-we-mean-by-fairness>
__Overview of Fairlearn <#overview-of-fairlearn>
__Getting started with fairlearn <#getting-started-with-fairlearn>
__Maintainers <#maintainers>
__Code of conduct <#code-of-conduct>
__Issues <#issues>
__
What we mean by fairness
An AI system can behave unfairly for a variety of reasons. In Fairlearn, we define whether an AI system is behaving unfairly in terms of its impact on people – i.e., in terms of harms. We focus on two kinds of harms:
-
Allocation harms. These harms can occur when AI systems extend or withhold opportunities, resources, or information. Some of the key applications are in hiring, school admissions, and lending.
-
Quality-of-service harms. Quality of service refers to whether a system works as well for one person as it does for another, even if no opportunities, resources, or information are extended or withheld.
We follow the approach known as group fairness, which asks: Which groups of individuals are at risk for experiencing harms? The relevant groups need to be specified by the data scientist and are application specific.
Group fairness is formalized by a set of constraints, which require that
some aspect (or aspects) of the AI system's behavior be comparable
across the groups. The Fairlearn package enables assessment and
mitigation of unfairness under several common definitions. To learn more
about our definitions of fairness, please visit our
user guide on Fairness of AI Systems <https://fairlearn.org/main/user_guide/fairness_in_machine_learning.html#fairness-of-ai-systems>
__.
*Note*: Fairness is fundamentally a sociotechnical challenge. Many
aspects of fairness, such as justice and due process, are not
captured by quantitative fairness metrics. Furthermore, there are
many quantitative fairness metrics which cannot all be satisfied
simultaneously. Our goal is to enable humans to assess different
mitigation strategies and then make trade-offs appropriate to their
scenario.
Overview of Fairlearn
The Fairlearn Python package has two components:
-
Metrics for assessing which groups are negatively impacted by a model, and for comparing multiple models in terms of various fairness and accuracy metrics.
-
Algorithms for mitigating unfairness in a variety of AI tasks and along a variety of fairness definitions.
Fairlearn metrics
Check out our in-depth `guide on the Fairlearn metrics <https://fairlearn.org/main/user_guide/assessment>`__.
Fairlearn algorithms
For an overview of our algorithms please refer to our
website <https://fairlearn.org/main/user_guide/mitigation/index.html>
__.
Getting Started with Fairlearn
First steps
- Install via pip: ``pip install fairlearn``
- Visit the `Quickstart guide <https://fairlearn.org/main/quickstart.html>`__.
- **Learning Resources**:
- Read the comprehensive `user guide <https://fairlearn.org/main/user_guide/index.html>`__.
- Look through the `example notebooks <https://fairlearn.org/main/auto_examples/index.html>`__.
For Users & Practitioners
-
Browse the
example gallery <https://fairlearn.org/main/auto_examples/index.html>
__. Please note that notebooks downloaded frommain
may not be compatible with pip-installed versions. -
Check the
API reference <https://fairlearn.org/main/api_reference/index.html>
__. -
Get Help:
-
Ask questions on
Stack Overflow <https://stackoverflow.com/questions/tagged/fairlearn>
__ with tagfairlearn
. -
Join the
Discord community <https://discord.gg/R22yCfgsRn>
__ for discussions.
-
For Contributors
- Read the `contributor guide <https://fairlearn.org/main/contributor_guide/index.html>`__.
- Check out the `good first issues <https://github.com/fairlearn/fairlearn/labels/good%20first%20issue>`__.
- Follow the `development process <https://fairlearn.org/main/contributor_guide/development_process.html>`__.
- Join the `Discord <https://discord.gg/R22yCfgsRn>`__ for contributor discussions. Please use the ``#development`` channel.
Maintainers
-----------
A list of current maintainers is
`on our website <https://fairlearn.org/main/about/index.html>`__.
Code of conduct
---------------
Fairlearn follows the `Fairlearn Organization's Code of Conduct <https://github.com/fairlearn/governance/blob/main/code-of-conduct.md>`__.
Issues
------
Regular (non-security) issues
Issues are meant for bugs, feature requests, and documentation
improvements. Please submit a report through
GitHub issues <https://github.com/fairlearn/fairlearn/issues>
__.
A maintainer will respond promptly as appropriate.
Maintainers will try to link duplicate issues when possible.
Reporting security issues
To report security issues please send an email to
``fairlearn-internal@python.org``.
.. |MIT license| image:: https://img.shields.io/badge/License-MIT-blue.svg
:target: https://github.com/fairlearn/fairlearn/blob/main/LICENSE
.. |PyPI| image:: https://img.shields.io/pypi/v/fairlearn?color=blue
:target: https://pypi.org/project/fairlearn/
.. |Discord| image:: https://img.shields.io/discord/840099830160031744
:target: https://discord.gg/R22yCfgsRn
.. |StackOverflow| image:: https://img.shields.io/badge/StackOverflow-questions-blueviolet
:target: https://stackoverflow.com/questions/tagged/fairlearn