aws-cdk-aws-batch 1.204.0


pip install aws-cdk-aws-batch

  Latest version

Released: Jun 19, 2023

Project Links

Meta
Author: Amazon Web Services
Requires Python: ~=3.7

Classifiers

Intended Audience
  • Developers

Operating System
  • OS Independent

Programming Language
  • JavaScript
  • Python :: 3 :: Only
  • Python :: 3.7
  • Python :: 3.8
  • Python :: 3.9
  • Python :: 3.10
  • Python :: 3.11

Typing
  • Typed

Development Status
  • 7 - Inactive

License
  • OSI Approved

Framework
  • AWS CDK
  • AWS CDK :: 1

AWS Batch Construct Library

---

End-of-Support

AWS CDK v1 has reached End-of-Support on 2023-06-01. This package is no longer being updated, and users should migrate to AWS CDK v2.

For more information on how to migrate, see the Migrating to AWS CDK v2 guide.


This module is part of the AWS Cloud Development Kit project.

AWS Batch is a batch processing tool for efficiently running hundreds of thousands computing jobs in AWS. Batch can dynamically provision different types of compute resources based on the resource requirements of submitted jobs.

AWS Batch simplifies the planning, scheduling, and executions of your batch workloads across a full range of compute services like Amazon EC2 and Spot Resources.

Batch achieves this by utilizing queue processing of batch job requests. To successfully submit a job for execution, you need the following resources:

  1. Job Definition - Group various job properties (container image, resource requirements, env variables...) into a single definition. These definitions are used at job submission time.
  2. Compute Environment - the execution runtime of submitted batch jobs
  3. Job Queue - the queue where batch jobs can be submitted to via AWS SDK/CLI

For more information on AWS Batch visit the AWS Docs for Batch.

Compute Environment

At the core of AWS Batch is the compute environment. All batch jobs are processed within a compute environment, which uses resource like OnDemand/Spot EC2 instances or Fargate.

In MANAGED mode, AWS will handle the provisioning of compute resources to accommodate the demand. Otherwise, in UNMANAGED mode, you will need to manage the provisioning of those resources.

Below is an example of each available type of compute environment:

# vpc: ec2.Vpc


# default is managed
aws_managed_environment = batch.ComputeEnvironment(self, "AWS-Managed-Compute-Env",
    compute_resources=batch.ComputeResources(
        vpc=vpc
    )
)

customer_managed_environment = batch.ComputeEnvironment(self, "Customer-Managed-Compute-Env",
    managed=False
)

Spot-Based Compute Environment

It is possible to have AWS Batch submit spotfleet requests for obtaining compute resources. Below is an example of how this can be done:

vpc = ec2.Vpc(self, "VPC")

spot_environment = batch.ComputeEnvironment(self, "MySpotEnvironment",
    compute_resources=batch.ComputeResources(
        type=batch.ComputeResourceType.SPOT,
        bid_percentage=75,  # Bids for resources at 75% of the on-demand price
        vpc=vpc
    )
)

Fargate Compute Environment

It is possible to have AWS Batch submit jobs to be run on Fargate compute resources. Below is an example of how this can be done:

vpc = ec2.Vpc(self, "VPC")

fargate_spot_environment = batch.ComputeEnvironment(self, "MyFargateEnvironment",
    compute_resources=batch.ComputeResources(
        type=batch.ComputeResourceType.FARGATE_SPOT,
        vpc=vpc
    )
)

Understanding Progressive Allocation Strategies

AWS Batch uses an allocation strategy to determine what compute resource will efficiently handle incoming job requests. By default, BEST_FIT will pick an available compute instance based on vCPU requirements. If none exist, the job will wait until resources become available. However, with this strategy, you may have jobs waiting in the queue unnecessarily despite having more powerful instances available. Below is an example of how that situation might look like:

Compute Environment:

1. m5.xlarge => 4 vCPU
2. m5.2xlarge => 8 vCPU
Job Queue:
---------
| A | B |
---------

Job Requirements:
A => 4 vCPU - ALLOCATED TO m5.xlarge
B => 2 vCPU - WAITING

In this situation, Batch will allocate Job A to compute resource #1 because it is the most cost efficient resource that matches the vCPU requirement. However, with this BEST_FIT strategy, Job B will not be allocated to our other available compute resource even though it is strong enough to handle it. Instead, it will wait until the first job is finished processing or wait a similar m5.xlarge resource to be provisioned.

The alternative would be to use the BEST_FIT_PROGRESSIVE strategy in order for the remaining job to be handled in larger containers regardless of vCPU requirement and costs.

Launch template support

Simply define your Launch Template:

// This example is only available in TypeScript
const myLaunchTemplate = new ec2.CfnLaunchTemplate(this, 'LaunchTemplate', {
  launchTemplateName: 'extra-storage-template',
  launchTemplateData: {
    blockDeviceMappings: [
      {
        deviceName: '/dev/xvdcz',
        ebs: {
          encrypted: true,
          volumeSize: 100,
          volumeType: 'gp2',
        },
      },
    ],
  },
});

and use it:

# vpc: ec2.Vpc
# my_launch_template: ec2.CfnLaunchTemplate


my_compute_env = batch.ComputeEnvironment(self, "ComputeEnv",
    compute_resources=batch.ComputeResources(
        launch_template=batch.LaunchTemplateSpecification(
            launch_template_name=my_launch_template.launch_template_name
        ),
        vpc=vpc
    ),
    compute_environment_name="MyStorageCapableComputeEnvironment"
)

Importing an existing Compute Environment

To import an existing batch compute environment, call ComputeEnvironment.fromComputeEnvironmentArn().

Below is an example:

compute_env = batch.ComputeEnvironment.from_compute_environment_arn(self, "imported-compute-env", "arn:aws:batch:us-east-1:555555555555:compute-environment/My-Compute-Env")

Change the baseline AMI of the compute resources

Occasionally, you will need to deviate from the default processing AMI.

ECS Optimized Amazon Linux 2 example:

# vpc: ec2.Vpc

my_compute_env = batch.ComputeEnvironment(self, "ComputeEnv",
    compute_resources=batch.ComputeResources(
        image=ecs.EcsOptimizedAmi(
            generation=ec2.AmazonLinuxGeneration.AMAZON_LINUX_2
        ),
        vpc=vpc
    )
)

Custom based AMI example:

# vpc: ec2.Vpc

my_compute_env = batch.ComputeEnvironment(self, "ComputeEnv",
    compute_resources=batch.ComputeResources(
        image=ec2.MachineImage.generic_linux({
            "[aws-region]": "[ami-ID]"
        }),
        vpc=vpc
    )
)

Job Queue

Jobs are always submitted to a specific queue. This means that you have to create a queue before you can start submitting jobs. Each queue is mapped to at least one (and no more than three) compute environment. When the job is scheduled for execution, AWS Batch will select the compute environment based on ordinal priority and available capacity in each environment.

# compute_environment: batch.ComputeEnvironment

job_queue = batch.JobQueue(self, "JobQueue",
    compute_environments=[batch.JobQueueComputeEnvironment(
        # Defines a collection of compute resources to handle assigned batch jobs
        compute_environment=compute_environment,
        # Order determines the allocation order for jobs (i.e. Lower means higher preference for job assignment)
        order=1
    )
    ]
)

Priorty-Based Queue Example

Sometimes you might have jobs that are more important than others, and when submitted, should take precedence over the existing jobs. To achieve this, you can create a priority based execution strategy, by assigning each queue its own priority:

# shared_compute_envs: batch.ComputeEnvironment

high_prio_queue = batch.JobQueue(self, "JobQueue",
    compute_environments=[batch.JobQueueComputeEnvironment(
        compute_environment=shared_compute_envs,
        order=1
    )],
    priority=2
)

low_prio_queue = batch.JobQueue(self, "JobQueue",
    compute_environments=[batch.JobQueueComputeEnvironment(
        compute_environment=shared_compute_envs,
        order=1
    )],
    priority=1
)

By making sure to use the same compute environments between both job queues, we will give precedence to the highPrioQueue for the assigning of jobs to available compute environments.

Importing an existing Job Queue

To import an existing batch job queue, call JobQueue.fromJobQueueArn().

Below is an example:

job_queue = batch.JobQueue.from_job_queue_arn(self, "imported-job-queue", "arn:aws:batch:us-east-1:555555555555:job-queue/High-Prio-Queue")

Job Definition

A Batch Job definition helps AWS Batch understand important details about how to run your application in the scope of a Batch Job. This involves key information like resource requirements, what containers to run, how the compute environment should be prepared, and more. Below is a simple example of how to create a job definition:

import aws_cdk.aws_ecr as ecr


repo = ecr.Repository.from_repository_name(self, "batch-job-repo", "todo-list")

batch.JobDefinition(self, "batch-job-def-from-ecr",
    container=batch.JobDefinitionContainer(
        image=ecs.EcrImage(repo, "latest")
    )
)

Using a local Docker project

Below is an example of how you can create a Batch Job Definition from a local Docker application.

batch.JobDefinition(self, "batch-job-def-from-local",
    container=batch.JobDefinitionContainer(
        # todo-list is a directory containing a Dockerfile to build the application
        image=ecs.ContainerImage.from_asset("../todo-list")
    )
)

Providing custom log configuration

You can provide custom log driver and its configuration for the container.

import aws_cdk.aws_ssm as ssm


batch.JobDefinition(self, "job-def",
    container=batch.JobDefinitionContainer(
        image=ecs.EcrImage.from_registry("docker/whalesay"),
        log_configuration=batch.LogConfiguration(
            log_driver=batch.LogDriver.AWSLOGS,
            options={"awslogs-region": "us-east-1"},
            secret_options=[
                batch.ExposedSecret.from_parameters_store("xyz", ssm.StringParameter.from_string_parameter_name(self, "parameter", "xyz"))
            ]
        )
    )
)

Importing an existing Job Definition

From ARN

To import an existing batch job definition from its ARN, call JobDefinition.fromJobDefinitionArn().

Below is an example:

job = batch.JobDefinition.from_job_definition_arn(self, "imported-job-definition", "arn:aws:batch:us-east-1:555555555555:job-definition/my-job-definition")

From Name

To import an existing batch job definition from its name, call JobDefinition.fromJobDefinitionName(). If name is specified without a revision then the latest active revision is used.

Below is an example:

# Without revision
job1 = batch.JobDefinition.from_job_definition_name(self, "imported-job-definition", "my-job-definition")

# With revision
job2 = batch.JobDefinition.from_job_definition_name(self, "imported-job-definition", "my-job-definition:3")
1.204.0 Jun 19, 2023
1.203.0 May 31, 2023
1.202.0 May 22, 2023
1.201.0 May 10, 2023
1.200.0 Apr 26, 2023
1.199.0 Apr 20, 2023
1.198.1 Mar 31, 2023
1.198.0 Mar 22, 2023
1.197.0 Mar 14, 2023
1.196.0 Mar 08, 2023
1.195.0 Mar 02, 2023
1.194.0 Feb 21, 2023
1.193.0 Feb 15, 2023
1.192.0 Feb 09, 2023
1.191.0 Jan 31, 2023
1.190.0 Jan 25, 2023
1.189.0 Jan 19, 2023
1.188.0 Jan 11, 2023
1.187.0 Jan 03, 2023
1.186.1 Dec 30, 2022
1.186.0 Dec 29, 2022
1.185.0 Dec 28, 2022
1.184.1 Dec 23, 2022
1.184.0 Dec 22, 2022
1.183.0 Dec 14, 2022
1.182.0 Dec 07, 2022
1.181.1 Nov 29, 2022
1.181.0 Nov 18, 2022
1.180.0 Nov 01, 2022
1.179.0 Oct 27, 2022
1.178.0 Oct 20, 2022
1.177.0 Oct 13, 2022
1.176.0 Oct 06, 2022
1.175.0 Sep 29, 2022
1.174.0 Sep 22, 2022
1.173.0 Sep 16, 2022
1.172.0 Sep 08, 2022
1.171.0 Aug 31, 2022
1.170.1 Aug 31, 2022
1.170.0 Aug 25, 2022
1.169.0 Aug 18, 2022
1.168.0 Aug 09, 2022
1.167.0 Aug 02, 2022
1.166.1 Jul 29, 2022
1.165.0 Jul 19, 2022
1.164.0 Jul 16, 2022
1.163.2 Jul 14, 2022
1.163.1 Jul 09, 2022
1.163.0 Jul 06, 2022
1.162.0 Jul 01, 2022
1.161.0 Jun 23, 2022
1.160.0 Jun 14, 2022
1.159.0 Jun 03, 2022
1.158.0 May 27, 2022
1.157.0 May 21, 2022
1.156.1 May 13, 2022
1.156.0 May 12, 2022
1.155.0 May 04, 2022
1.154.0 Apr 28, 2022
1.153.1 Apr 23, 2022
1.153.0 Apr 22, 2022
1.152.0 Apr 07, 2022
1.151.0 Apr 01, 2022
1.150.0 Mar 26, 2022
1.149.0 Mar 17, 2022
1.148.0 Mar 10, 2022
1.147.0 Mar 01, 2022
1.146.0 Feb 25, 2022
1.145.0 Feb 19, 2022
1.144.0 Feb 08, 2022
1.143.0 Feb 02, 2022
1.142.0 Jan 29, 2022
1.141.0 Jan 27, 2022
1.140.0 Jan 20, 2022
1.139.0 Jan 11, 2022
1.138.2 Jan 10, 2022
1.138.1 Jan 07, 2022
1.138.0 Jan 04, 2022
1.137.0 Dec 21, 2021
1.136.0 Dec 15, 2021
1.135.0 Dec 10, 2021
1.134.0 Nov 23, 2021
1.133.0 Nov 19, 2021
1.132.0 Nov 09, 2021
1.131.0 Nov 07, 2021
1.130.0 Oct 29, 2021
1.129.0 Oct 21, 2021
1.128.0 Oct 14, 2021
1.127.0 Oct 08, 2021
1.126.0 Oct 05, 2021
1.125.0 Sep 29, 2021
1.124.0 Sep 21, 2021
1.123.0 Sep 17, 2021
1.122.0 Sep 08, 2021
1.121.0 Sep 01, 2021
1.120.0 Aug 26, 2021
1.119.0 Aug 17, 2021
1.118.0 Aug 11, 2021
1.117.0 Aug 05, 2021
1.116.0 Jul 28, 2021
1.115.0 Jul 21, 2021
1.114.0 Jul 15, 2021
1.113.0 Jul 12, 2021
1.112.0 Jul 09, 2021
1.111.0 Jul 02, 2021
1.110.1 Jun 28, 2021
1.110.0 Jun 24, 2021
1.109.0 Jun 17, 2021
1.108.1 Jun 11, 2021
1.108.0 Jun 09, 2021
1.107.0 Jun 02, 2021
1.106.1 May 26, 2021
1.106.0 May 25, 2021
1.105.0 May 19, 2021
1.104.0 May 15, 2021
1.103.0 May 10, 2021
1.102.0 May 04, 2021
1.101.0 Apr 28, 2021
1.100.0 Apr 20, 2021
1.99.0 Apr 19, 2021
1.98.0 Apr 12, 2021
1.97.0 Apr 06, 2021
1.96.0 Apr 01, 2021
1.95.2 Apr 01, 2021
1.95.1 Mar 26, 2021
1.95.0 Mar 25, 2021
1.94.1 Mar 17, 2021
1.94.0 Mar 16, 2021
1.93.0 Mar 11, 2021
1.92.0 Mar 06, 2021
1.91.0 Feb 23, 2021
1.90.1 Feb 19, 2021
1.90.0 Feb 17, 2021
1.89.0 Feb 09, 2021
1.88.0 Feb 04, 2021
1.87.1 Jan 28, 2021
1.87.0 Jan 27, 2021
1.86.0 Jan 21, 2021
1.85.0 Jan 14, 2021
1.84.0 Jan 12, 2021
1.83.0 Jan 06, 2021
1.82.0 Jan 03, 2021
1.81.0 Dec 31, 2020
1.80.0 Dec 22, 2020
1.79.0 Dec 17, 2020
1.78.0 Dec 12, 2020
1.77.0 Dec 07, 2020
1.76.0 Dec 01, 2020
1.75.0 Nov 24, 2020
1.74.0 Nov 17, 2020
1.73.0 Nov 11, 2020
1.72.0 Nov 06, 2020
1.71.0 Oct 29, 2020
1.70.0 Oct 24, 2020
1.69.0 Oct 19, 2020
1.68.0 Oct 15, 2020
1.67.0 Oct 07, 2020
1.66.0 Oct 02, 2020
1.65.0 Oct 01, 2020
1.64.1 Sep 25, 2020
1.64.0 Sep 24, 2020
1.63.0 Sep 14, 2020
1.62.0 Sep 04, 2020
1.61.1 Aug 28, 2020
1.61.0 Aug 27, 2020
1.60.0 Aug 20, 2020
1.59.0 Aug 15, 2020
1.58.0 Aug 12, 2020
1.57.0 Aug 07, 2020
1.56.0 Aug 01, 2020
1.55.0 Jul 28, 2020
1.54.0 Jul 22, 2020
1.53.0 Jul 20, 2020
1.52.0 Jul 18, 2020
1.51.0 Jul 09, 2020
1.50.0 Jul 07, 2020
1.49.1 Jul 02, 2020
1.49.0 Jul 02, 2020
1.48.0 Jul 01, 2020
1.47.1 Jun 30, 2020
1.47.0 Jun 24, 2020
1.46.0 Jun 20, 2020
1.45.0 Jun 09, 2020
1.44.0 Jun 04, 2020
1.43.0 Jun 04, 2020
1.42.1 Jun 01, 2020
1.42.0 May 27, 2020
1.41.0 May 21, 2020
1.40.0 May 20, 2020
1.39.0 May 16, 2020
1.38.0 May 08, 2020
1.37.0 May 05, 2020
1.36.1 Apr 29, 2020
1.36.0 Apr 28, 2020
1.35.0 Apr 24, 2020
1.34.1 Apr 22, 2020
1.34.0 Apr 21, 2020
1.33.1 Apr 19, 2020
1.33.0 Apr 17, 2020
1.32.2 Apr 10, 2020
1.32.1 Apr 09, 2020
1.32.0 Apr 07, 2020
1.31.0 Mar 24, 2020
1.30.0 Mar 18, 2020
1.29.0 Mar 18, 2020
1.28.0 Mar 16, 2020
1.27.0 Mar 03, 2020
1.26.0 Feb 26, 2020
1.25.0 Feb 19, 2020
1.24.0 Feb 14, 2020
1.23.0 Feb 07, 2020
1.22.0 Jan 23, 2020
1.21.1 Jan 16, 2020
1.21.0 Jan 16, 2020
1.20.0 Jan 07, 2020
1.19.0 Dec 17, 2019
1.18.0 Nov 25, 2019
1.17.1 Nov 19, 2019
1.17.0 Nov 19, 2019
1.16.3 Nov 13, 2019
1.16.2 Nov 12, 2019
1.16.1 Nov 12, 2019
1.16.0 Nov 11, 2019
1.15.0 Oct 28, 2019
1.14.0 Oct 22, 2019
1.13.1 Oct 15, 2019
1.13.0 Oct 15, 2019
1.12.0 Oct 07, 2019
1.11.0 Oct 02, 2019
1.10.1 Oct 01, 2019
1.10.0 Sep 30, 2019
1.9.0 Sep 20, 2019
1.8.0 Sep 10, 2019
1.7.0 Sep 06, 2019
1.6.1 Aug 29, 2019
1.6.0 Aug 27, 2019
1.5.0 Aug 21, 2019
1.4.0 Aug 14, 2019
1.3.0 Aug 02, 2019
1.2.0 Jul 25, 2019
1.1.0 Jul 19, 2019
1.0.0 Jul 11, 2019
0.39.0 Jul 09, 2019
0.38.0 Jul 08, 2019
0.37.0 Jul 04, 2019
0.36.2 Jul 03, 2019
0.36.1 Jul 01, 2019
0.36.0 Jun 25, 2019
0.35.0 Jun 19, 2019
0.34.0 Jun 10, 2019
0.33.0 May 30, 2019
0.32.0 May 24, 2019
0.31.0 May 07, 2019
0.30.0 May 02, 2019
0.29.0 Apr 24, 2019
0.28.0 Apr 04, 2019
0.27.0 Mar 28, 2019
0.26.0 Mar 28, 2019
Extras: None
Dependencies:
aws-cdk.aws-ec2 (==1.204.0)
aws-cdk.aws-ecr (==1.204.0)
aws-cdk.aws-ecs (==1.204.0)
aws-cdk.aws-iam (==1.204.0)
aws-cdk.aws-secretsmanager (==1.204.0)
aws-cdk.aws-ssm (==1.204.0)
aws-cdk.core (==1.204.0)
constructs (<4.0.0,>=3.3.69)
jsii (<2.0.0,>=1.84.0)
publication (>=0.0.3)
typeguard (~=2.13.3)